Lgr5+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors

نویسندگان

  • Gerline C. van de Glind
  • Jacoba J. Out
  • Heggert G. Rebel
  • Cornelis P. Tensen
  • Frank R. de Gruijl
چکیده

Actively proliferating Lgr5+ skin stem cells are found deep in the hair follicle (HF). These cells renew the HF and drive its expansion in anagen phase. Their long residence and continuous mitotic activity make them prime candidates to transform into skin tumor-initiating cells. This was investigated by subjecting Lgr5-EGFP-Ires-CreERT2/R26R-LacZ mice (haired and hairless) to chemical and UV carcinogenic regimens. In the course of these regimens Lgr5+ cells (EGFP+) remained exclusively located in HFs, and in deep-seated cysts of hairless skin. In haired mice, progeny of Lgr5+ stem cells (LacZ+ after a pulse of tamoxifen) appeared in the interfollicular epidermis upon UV-induced sunburn and in TPA-induced hyperplasia. In hairless mice the progeny remained located in deep-seated cysts and in HF remnants. Progeny in hairless skin was only detected interfollicularly at a late stage, in between outgrowing tumors. Lgr5+ stem cells were absent in the ultimate tumor masses, and no tumor appeared to be a (clonal) expansion of Lgr5+ cells (52 tumors with tamoxifen at the start of carcinogenesis, 42 tumors with tamoxifen late during tumor outgrowth). In contrast to CD34/K15+ quiescent bulge stem cells, actively proliferating Lgr5+ stem cells do therefore not appear to be tumor drivers in experimental skin carcinogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lgr6+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors

Lgr6+ cells have been identified as a novel class of proliferating (Ki67+) stem cells in mouse epidermis. We investigated their response to UV exposure in Lgr6-EGFP-Ires-CreERT2/R26R-LacZ haired and hairless mice and whether they become initiating cells of UV- or chemically induced skin tumors. UV overexposure erased Lgr6+ cells (EGFP+) from the interfollicular epidermis (IFE), but - as after w...

متن کامل

Immunohistochemical Analysis of LGR5 and TROY Expression in Gastric Carcinogenesis Demonstrates an Inverse Trend

Background: Two of the Wnt signaling pathway target genes, tumor necrosis factor receptor family member (TROY) and leucine-rich G-protein coupled receptor (LGR5), are involved in the generation and maintenance of gastrointestinal epithelium. A negative modulatory role has recently been assigned to TROY, in this pathway. Here, we have examined their simultaneous expression in gastric carcinogene...

متن کامل

Healing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration

Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...

متن کامل

HPV8 Field Cancerization in a Transgenic Mouse Model Is due to Lrig1+ Keratinocyte Stem Cell Expansion

β-Human papillomaviruses (HPVs) cause near ubiquitous latent skin infection within long-lived hair follicle (HF) keratinocyte stem cells. In patients with epidermodysplasia verruciformis, β-HPV viral replication is associated with skin keratosis and cutaneous squamous cell carcinoma. To determine the role of HF keratinocyte stem cells in β-HPV-induced skin carcinogenesis, we utilized a transgen...

متن کامل

EFFECT OF IRON OVERLOAD ON 7, 12-DIMETHYLBENZ (A) ANTHRACENE-INDUCED SKIN TUMORIGENESIS

Iron overload is known to occur in the West European and American population due to the consumption of iron-rich diets. On the other hand, genetic disorders leading to iron overload are also known. Iron overload leads to increased peroxidation and disruptive disintegration of lipid-rich membranes, and predisposes humans for an enhanced risk of cancer induction. In experimental animals iron ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016